

Program SPECIFICATION FOR Master Degree in Radiobiology

Code: 1711700

University: Alexandria

Faculty: Medical Research Institute

Program Specification

A- Basic information

- 1- Programtitle: Master in Radiobiology
- **2-** Program type: single $\sqrt{}$ Double multiple
 - 3- Department(s) :Radiation Sciences Department
 - 4- Coordinator:Dr.MarwaSamehAbou El-Eneen
 - 5- External evaluator(s): Prof. Samir Yousha El-khameesy
 - 6- Last date of program specification approval: 5/6/2014

B- Professional Information

1- Program aims:

This program aims to:

- **1.** Recognize the various routs of exposure to radiation.
- **2.** Define the physical basics underlying the process of radioactivity, quantum physics and its implementation in the field of radiation kinetics.
- **3.** Recall the basics of classical and molecular radiation chemistry.
- **4.** Apply the detailed mathematics of radioactive decay, calculation for the assessment of radiolabelled compounds and internal and external dosimetries
- **5.** Recognize the effects of low and high doses of radiation on the organism and at the cellular and subcellular levels.
- 6. Demonstrate the major applications of radioactive isotopes in the various aspects of life.
- **7.** Relate the nature, types and significance of radioactive waste with its sources and the major methods used for their management
- **8.** Illustrate all aspects of personal and environmental dosimetry and monitoring for both ionizing and non-ionizing radiations.
- **9.** Demonstrate the basic techniques used for radiolabeling, quality control and clinical uses of the radiolabeled pharmaceuticals.

- **10.** Relate the complex events that require an effective and careful response to a radiological emergency and extensive preparation.
- **11.** Identify the safe and effective use of radioactive materials for the diagnosis of various pathological disease states and for the treatment of some specific disorders.
- **12.** Define the principles and the types of decontamination dealing with each type of accidents for personnel, workplace and environment
- **13.** Illustrate sources and routes of radioactivity in the environment, environmental surveillance and radiological impact assessment.
- 14. Upgrading research interest and abilities.
- 15. Use systematic approaches to design and conduct scientific research

2- Intended learning outcomes (ILOS)

a- knowledge and understanding:

- a1-Recall the basic physical and chemical concepts underlying the process of radioactivity.
- **a2-** Describe the different ways by which charged particles and photons may interact with matter.
- **a3-** Discuss the Effects of low and high doses of radiation on the biological systemat the molecular and subcellular levels.
- a4- List the industrial, medical, agricultural and environmental uses of radioactive Sources.
- **a5-** State the components of a radiological monitoring program for contamination control and common methods used to accomplish them.
- **a6**-Define dosimetry quantities, units and instruments, maximum permissible and annual dose limits.
- **a7-**List methods of radiolabeling, isotopes used for the process, and physical and biological properties of radiolabeled product.
- **a8-**Describe a crisis according to the guidelines for Incident Command and Emergency Medical Management.

a9-Recall the methods of survey for contamination and decontamination for both facilities and personnel.

a10- Recall types, sources, packaging and transportation of radioactive waste.

a11-List the pathways and sources of radiation in nature and their impact on the environment.

a12-Review the environmental and ecological impact of radioactivity.

b- Intellectual skills:

- **b1**-Differentiate between the types of radioactive decay based on their physical and chemical properties and with matter.
- **b2-**Differentiate between directly and indirectly ionizing radiation.
- b3-CompareAcute and Delayed Effects of Ionizing Radiation.
- **b4**-Distinguish the different applications of radiation in medical and nonmedical field.
- **b5-**Examine the protective measures and the contamination control program applied in the facility.

- **b6**-Calculate the maximum permissible dose and dose limits for radiotherapy and nuclear imaging patients.
- **b7**-Distinguish between occupational and non-occupational dose limits and different types of dosimetry.
- **b8-**Compare exposures due to natural sources vs. man-made sources.
- **b9-**Distinguish the uses, dosimetry and quality control of radiopharmaceuticals.
- **b10**-Criticize an Emergency plane for the facility and personnel.
- **b11-** Calculate the contamination risk to the environment after application of a waste management plane for the facility.
- **b12-**Categorize the methods of internal and external decontamination.
- **b13**-Derive the Radioactive Decay Low, activity and half-life Equations.
- b14-Differentiate between direct and indirect radioimmunoassays.
- **b15-** Write a thesis protocol using a scientific systematic approach to a research problem.

c- professional and practical skills:

- c1-Solve problems on nuclear binding energy and other quantum mechanical laws.
- c2- Deduce the radioactive decay law and calculate activity and half-life.
- **c3-**Practice radiation measurement using various survey meters and counters as gamma scintillation counter and GM survey meter.
- c4- Solve problems involving basic units of radiation and radioactivity
- c5-Calculate Internal and External dose equivalents.
- c6- Practice how to use shields against penetrating radiations.
- c7-Derive mathematical definitions of radiation exposure and absorbed dose.
- c8-Solve variable dosimetric parameters.
- **c9-** Apply the principles of maximum permissible dose and annual dose limits in calculating dose and dose rate for radiotherapy.
- c10- Construct and use of Decay Tables.
- c11- Apply Nuclear Counting Statistics.
- c12- Perform assessment calculations of Radiolabeled Preparation.
- c13- Apply radioanalytical techniques such as RIA and IRMA.
- c14- Demonstrate radiolabeled compounds preparation.

d- General and transferable skills:

d1- Communicate Effectively Using Scientific Language and Reasoning.

- **d2-** Understand the cumulative nature of scientific knowledge.
- d3- Maintain an open and questioning mind toward ideas and alternative points of view.
- d4-Enhance students' written and oral skills.
- d5- Master access to web sites to perform a research or solve problems.
- d6- Develop team work skills.
- **d7-** Use information technology.
- d8-Evaluate and solve problems based on scientific evidence team work skills.

3- Academic standards

3a External references for standards (Benchmarks)

Generic Academic Reference Standards if the National Authority for Quality Assurance and Accreditation of Education (NAQAAE) adopted at MRI council 12/2/2014 and re-adopted at 15/1/2023

Last Date of Academic Reference standards (ARS) approval by Institute Council: 15/1/2023

NAQAAE	ARS for master in Radiobiology
A1-Basic facts , theories, of the specialty and related subjects/ fields	A1. Review the basics underlying the process of radioactivity and radiation kinetics.
	A2. Recognize the major applications of radioactive isotopes
A2-Mutual relation between professional practice and effects on environment	A3. Identify the nature, types and significance of radioactive waste.A4. Review the impact of contamination on the environment.
A3-Main scientific advances in the field of practice	A5. Review the recent industrial, medical and agricultural uses of radioactive sources.
A4-Fundamentals of ethical & legal practice	A6. Identify basic principles and ethics of scientific research
A5 -Quality standards of the practice	A7. Recognize quality standards in handling radioactive materials.
A6- Basics and ethics of scientific research	A6. Identify basic principles and ethics of scientific research.
B1 -Interpret, analyze & evaluate the information to solve problems.	B1. Assess the risk/benefit ratio of radiation use.B2. Derive dosimetric calculations involving internal and external doses.
B2- Solve some problems that do not conform to classic data (incomplete data)	B3. Analyze events that require an effective and careful response to a radiological emergency.
B3- Integrate different information to solve professional problems.	B4. Apply different types of decontamination dealing with each type of accidents for personnel and workplace.
B4- Conduct scientific research &/Or write scientific systematic approach to a research problem (hypothesis).	B5. Write a thesis protocol using a scientific systematic approach to a research problem.
B5- Evaluate risks imposed during	B1. Assess the risk/benefit ratio of radiation use.

3b Comparison of provision to selected external references

professional practice.	
B6- Plan for professional improvement	B8. Plan for periodic self-enhancement of his/her skills Provide the student with practical skills of works to enhance his ability in the future employment
B7- Take professional decisions in wide range of professional situations	B3. Analyze events that require an effective and careful response to a radiological emergency.B4. Apply different types of decontamination dealing with each type of accidents for personnel and workplace.
C1- Competent in all basic and some of theadvanced professional skills (to be determined according to the specialty board/ department)	C1. Practice radiation measurement using various survey meters and counters (as gamma scintillation counter and GM survey meter).
C2- Write and appraise reports	C2. Analyze, interpret and write reports on radioactive decay modes.
C3-Evaluate methods and tools used in specialty	C3. Enhance the skills of the student in handling radioactive materials.C4. Solve variable dosimetric parameters.C5. Perform assessment calculations of Radiolabeled compounds' Preparation.
D1- Communicate effectively using all methods	D1. Communicate Effectively Using Scientific Language and Reasoning.D2. Enhance students' written and oral skills.
D2- Use information technology to improve his/her professional practice	D3.Use information technology in handling data, information retrieval, document preparation, presentation and communication.
D3-Practice self-appraisal and determines his learning needs	D4.Develop an independent approach to learning as a preparation for continuous professional development
D4- Share in determination of standards for evaluation of others (e.g.: subordinates/ trainees etc.)	D5. Share in determination of standards for evaluating others (e.g. subordinates, trainees).
D5- Use different sources of information to obtain data	D6. Master access to web sites to perform a research or solve problems.
D6- Work in teams - Manage time effectively	D7. Establish working relationship with colleagues, work effectively as a part of a team and develop a culture of disseminating and sharing information with peers.
D7-Work as team leader in situations comparable to his work level	D8. Work as team leader in situations comparable to his work level
D8-Learn independently and seek continuous learning	D9. Develop an independent approach to learning as a preparation for continuous professional development

4- Curriculum structure and contents

4.a program duration: 3 years on average

Program durations was determined according to the average time needed for student graduation over the last 10 years

4.b program structure :

4.b.i- No. of hours per week in each year/semester:

Semester	Core Courses	Elective Courses
Semester	No. of hours	No. of hours
First semester	9 CH	
Second semester	9 CH	8 CH
Third semester	8 CH	

+ 8 thesis hours

4.b.ii- No. of credit hours	Lectures	23	Practical	7	Thesis	8	Total		38	
	Compulsory	18	Elective	12			Optio	nal	0	
4.b.iii- No. of credi	it hours of spe	cialize	ed courses		No.		22	%	7	3.4
4.b. iv- No. of credit hours of other courses				No.		4	%	1	3.3	

4.b.v- Program levels (in credit-hours system)

Student is required to pass at least 12 credit hours with CGPA not less than C+ before submitting a thesis proposal.

5- Program Courses

5.1- Compulsory (18Cr)

			No. of hours /week	
Code No.	Course Title	credit hours		Practical
1711701	Radiation physics	3	2	2
1711702	Basics of Radiation chemistry	2	1	2
1711703	Mathematics of radioactivity	2	1	2
1711704	Basics of Radiobiology	2	2	-
1711705	Applied radiation sciences	2	2	-

1711706	Waste management	2	2	-
1711707	Radiation protection		1	2
1711708	Dose measurements	2	1	2
1711709	Exposures to radiation	1	1	-
	Total	18	13	10

5.2- Elective I (4Cr)

		No. of	No. of hours /week	
Code No.	Course Title	credit hours Lecture Pra		Practical
1711710	Radiopharmaceuticals	2	2	-
1711711	Nuclear medicine	1	1	-
1711712	Crisis management	1	1	-
1711713	711713 Decontamination		2	-
1711714	Environmental radiations	2	2	-

5.3- Elective II (8 Cr)

			No. of hours /week		
Code No.	Course Title	credit hours	Lecture	Practical	
1701720	Biochemistry	2	1	2	
1701721	Molecular biology	2	1	2	
1721720	Medical statistics	2	1	2	
1704720	Pharmacology	2	1	2	
1721721	Computer	2	1	2	

5.4- Optional – (none)

6- Program admission requirements

Graduate students with a M. B. Ch. B of Medicine, B.Sc. of Veterinary, Engineering, science, or Agriculture.

7- Teaching and Learning Methods:

Lecture Practical Brainstorming Discussion Groups Problem Solving Case Study

Self-Directed Learning Project Role playing

8- Regulations for progression and program completion

For the progression and completion of the program to obtain the degree of M.Sc. in Radiobiology, the student must

- 1. Complete 30 credit hours with CGPA of at least C+ through courses
- 2. Complete 8 credit hours with through thesis.
- 3. Submit a thesis validity report by an examination committee approved by the department council and their members include at least one external examiner.

8- Evaluation of Students enrolled in the program.

Tool evaluation	Intended learning outcomes being assessed
Written	ILOs a &b
Practical	ILOs c
Oral	ILOs a ,b &d
Semester Work	ILOs b&d

9- Evaluation of program intended learning outcomes

Evaluator	tool	Sample
1- Senior students	Questionnaire	All students
2- Alumni	Questionnaire	Selected representatives
3- Stakeholders (Employers)	Meeting	Representative sample
4- External Evaluator	Report	Prof. Samir Yousha El-
		khameesy

Program coordinator:

Name: Dr.Marwa Sameh Abou El-Eneen

Signature Signature

Department head:

Name: Prof. Ebtsam R.Zaher

د. ایک ظاهر > Signature

Date of Department Council Approval: 29 / 8 / 2023

 Program Aims vs Graduate Attribute matrix 				
Generic Graduate Attributes of NAQAAE	Graduate Attributes of Master of Science in Radiobiology By the end of this program, Graduate of Master of Science in Radiobiology	Aims		
Apply the basics and methodologies of scientific research and using its various tools proficiently.	 should be able to Apply the basic physical and chemical concepts of radioactivity to distinguish radiation interaction with matter. 	 Define the physical basics underlying the process of radioactivity, quantum physics and its implementation in the field of radiation kinetics. Recall the basics of classical and 		
Use the analytical methods in the field of specialty	• Recall dosimetry quantities and various monitoring instruments used in the field of radiobiology to evaluate and assess analytically internal and external dosimetry.	 molecular radiation chemistry. Recognize the various routs of exposure to radiation. Apply the detailed mathematics of radioactive decay, calculation for the assessment of radiolabelled compounds and internal and external dosimetries Illustrate all aspects of personal and environmental dosimetry and monitoring for both ionizing and non-ionizing radiations. 		
Apply specialized knowledge in the field of specialty and integrate it with relevant knowledge in his professional practice.	• Apply the principles and calculations of radiation attenuation using different materials and evaluate its impact on the safety of personnel in various situations of radiation exposure.	 Define the physical basics underlying the process of radioactivity, quantum physics and its implementation in the field of radiation kinetics. Apply the detailed mathematics of radioactive decay, calculation for the assessment of radiolabelled compounds and internal and external dosimetries Identify the safe and effective use of radioactive materials for the diagnosis of various pathological disease states and for the treatment of some specific disorders. Define the principles and the types of decontamination dealing with each type of accidents for personnel, workplace and environment 		
Demonstrate awareness	• Demonstrate competence in	• Recognize the effects of low and high		

• Program Aims vs Graduate Attribute matrix

of current problems and modern visions in the field of specialty	 defining major and current challenges in the field of radiobiology. Distinguish recent updates in radiobiological techniques or newly developed instruments and clarify how they used to face current challenges. 	 doses of radiation on the organism and at the cellular and subcellular levels. Demonstrate the major applications of radioactive isotopes in the various aspects of life. Relate the nature, types and significance of radioactive waste with its sources and the major methods used for their management Illustrate all aspects of personal and environmental dosimetry and monitoring for both ionizing and non-ionizing radiations. Demonstrate the basic techniques used for radiolabeling, quality control and clinical uses of the radiolabeled pharmaceuticals. Relate the complex events that require an effective and careful response to a radiological emergency and extensive preparation. Identify the safe and effective use of radioactive materials for the diagnosis of various pathological disease states and for the treatment of some specific disorders.
Identify professional problems in the field of specialty and propose solutions to them.	• Describe limitations of radiation therapy through highlighting the role of cancer biology and demonstrate exceptional solutions to such a major problem in radiobiology.	 Recognize the effects of low and high doses of radiation on the organism and at the cellular and subcellular levels. Demonstrate the major applications of radioactive isotopes in the various aspects of life. Demonstrate the basic techniques used for radiolabeling, quality control and clinical uses of the radiolabeled pharmaceuticals. Identify the safe and effective use of radioactive materials for the diagnosis of various pathological disease states and for the treatment of some specific disorders.
Master an appropriate of professional skills in the field of including use of technology.	• Demonstrate competency in applying radioanalytical techniques, optimizing imaging modalities, using shields, and surveying.	 Apply the detailed mathematics of radioactive decay, calculation for the assessment of radiolabelled compounds and internal and external dosimetries Recognize the effects of low and high doses of radiation on the organism and at the cellular and subcellular levels. Demonstrate the major applications of radioactive isotopes in the various aspects of life. Relate the nature, types and significance of radioactive waste with its sources and the major methods used for their

Communicate efficiently and lead work teams.	 Demonstrate proficiency in writing and speaking in a scientific and technical language. Demonstrate exquisite time menagement and technical 	 management Demonstrate the basic techniques used for radiolabeling, quality control and clinical uses of the radiolabeled pharmaceuticals. Relate the complex events that require an effective and careful response to a radiological emergency and extensive preparation. Identify the safe and effective use of radioactive materials for the diagnosis of various pathological disease states and for the treatment of some specific disorders. Recognize the various routs of exposure Upgrading research interest and abilities. Use systematic approaches to design and conduct scientific research
	management and teamwork	
Take Decision in different professional contexts.	 skills. Analyze different exposure scenarios and assess the risk, then accordingly provide an appropriate action plan. 	 Recognize the various routs of exposure to radiation. Apply the detailed mathematics of radioactive decay, calculation for the assessment of radiolabelled compounds and internal and external dosimetries Illustrate all aspects of personal and environmental dosimetry and monitoring for both ionizing and non-ionizing radiations. Relate the complex events that require an effective and careful response to a radiological emergency and extensive preparation. Illustrate sources and routes of radioactivity in the environment, environmental surveillance and radiological impact assessment.
Employ the available resources to achieve the highest benefit and maintain them.	• Recall elements of a radiation protection program and plan for its implementation through using the available resources.	 Recognize the various routs of exposure to radiation. Recognize the effects of low and high doses of radiation on the organism and at the cellular and subcellular levels. Illustrate all aspects of personal and environmental dosimetry and monitoring for both ionizing and non-ionizing radiations. Relate the complex events that require an effective and careful response to a radiological emergency and extensive preparation. Define the principles and the types of

Show awareness of his/her role in community development and environmental preservation in light of global and regional changes.	• Describe how global and regional changes affect the use of radioactive materials and plan a review and audit system for different facilities using radiation to assess their environmental and ecological impact.	 decontamination dealing with each type of accidents for personnel, workplace and environment Illustrate sources and routes of radioactivity in the environment, environmental surveillance and radiological impact assessment. Recognize the various routs of exposure to radiation. Define the physical basics underlying the process of radioactivity, quantum physics and its implementation in the field of radiation kinetics. Recall the basics of classical and molecular radiation chemistry. Apply the detailed mathematics of radioactive decay, calculation for the assessment of radiolabelled compounds and internal and external dosimetries Relate the nature, types and significance of radioactive waste with its sources and the major methods used for their management Illustrate all aspects of personal and environmental dosimetry and monitoring for both ionizing and non-ionizing radiations. Relate the complex events that require an effective and careful response to a radiological emergency and extensive preparation. Define the principles and the types of decontamination dealing with each type of accidents for personnel, workplace and environmental surveillance and radiological impact assessment.
Act in a manner that reflects a commitment to integrity, credibility, professionality, and accountability.	 Review responsibilities of personnel working in a facility that uses radiation. Demonstrate competency and commitment to integrity, credibility, professionality, and accountability during decontaminating and reporting different contamination scenarios. 	 Illustrate all aspects of personal and environmental dosimetry and monitoring for both ionizing and non-ionizing radiations. Relate the complex events that require an effective and careful response to a radiological emergency and extensive preparation. Define the principles and the types of decontamination dealing with each type of accidents for personnel, workplace and environment

	technology through self-	 Upgrading research interest and abilities. Use systematic approaches to design and conduct scientific research
--	--------------------------	---

• M.Sc. of Radiobiology Program Aims vs ILOs matrix

Program Aims	а 1	а 2	а 3	a 4	a 5	а 6	a 7	а 8	а 9	а 10	а 11	а 12	b 1	b 2	b 3	b 4	b 5	b 6	b 7	8	3	b 9	b 10	b1 1	b 12	b 13	b 14	b 15
1. Recognize the various routs of exposure to radiatio.												х								-	ĸ							
2. Define the physical basics underlying the process of radioactivity, quantum physics and its implementation in the field of radiation kinetics.	Х												х															
3. Recall the basics of classical and molecular radiation chemistry.	Х	x											x	х														
4. Apply the detailed mathematics of radioactive decay, calculation for the assessment of radiolabelled compounds and internal and external dosimetries			x												х													
5. Recognize the effects of low and high doses of radiation on the organism and at the cellular and subcellular levels.				x												х												
6. Demonstrate the major applications of radioactive isotopes in the various aspects of life.										х														x				
7. Relate the nature, types and significance of radioactive waste with its sources and the major methods used for their management						x												x	x									
8. Illustrate all aspects of personal and environmental dosimetry and monitoring for both ionizing and non-ionizing radiations.							x															x						
9. Demonstrate the basic techniques used for radiolabeling, quality control and clinical uses of the radiolabeled pharmaceuticals.								x															х					
10. Relate the complex events that require an effective and careful response to a radiological emergency and extensive preparation.						X													x						х	х		
11. Identify the safe and effective use of radioactive materials for the diagnosis of various pathological disease states and for the treatment of some specific disorders.				X	x												x										x	
12. Define the principles and the types of decontamination dealing with each type of accidents for personnel, workplace									x																x			

and environment														
13. Illustrate sources and routes of radioactivity in the environment, environmental surveillance and radiological						x								
impact assessment .														
14.Upgrading research interest and abilities.														х
Use systematic approaches to design and conduct scientific research														

Program Aims	с 1	с 2	с З	с 4	с 5	с 6	с 7	с 8	с 9	C1 0	C1 1	C1 2	C 13	С 14	d 1	d 2	d 3	d 4	d 5	d 6	d 7	d 8
1. Introduce the student to the various routs of exposure to radiation.																						
2. Provide the student with the physical basics underlying the process of radioactivity, quantum physics and its implementation in the field of radiation kinetics.	x	x	x																			
3. Provide knowledge of the basics of classical and molecular radiation chemistry.				х	Х																	
4. Introduce the student to the detailed mathematics of radioactive decay, calculation for the assessment of radiolabelled compounds and internal and external dosimetries												x		х								
5. Introduce the effects of low and high doses of radiation on the organism and at the cellular and subcellular levels.																						
6. Highlight the major applications of radioactive isotopes in the various aspects of life.													x									
7. Introduce the nature, types and significance of radioactive waste, its sources and the major methods used for their management							x	х	x													
8. Illustrate all aspects of personal and environmental dosimetry and monitoring for both ionizing and non-ionizing radiations.																						
9. Focus on the basic techniques used for radiolabeling, quality control and clinical uses of the radiolabeled pharmaceuticals.												х		х								
10. Introduce the complex events that require an effective and careful response to a radiological emergency and extensive preparation.		x								x	x											

х

х

х

1711701 Radiation physics

	x		Х	х																
													x	х	x	х	x	x	x	х
		x x			x X x	x X x	x X x	x X x	x X x	x X x	x X x	x X x	x X x							

• .Sc. of Radiobiology Courses vs Program ILOs matrix

			-																								
Courses	a1	a2	a3	a4	a5	a6	a7	a8	a9	а	а	а	b1	b2	b3	b4	b5	b6	b7	b8	b9	b1	b1	b1	b1	b1	B1
										10	11	12										0	1	2	3	4	5
1711701 Radiation physics	Х												х														
1711702 Basics of Radiation chemistry	Х	х											х	х													
1711703 Mathematics of radioactivity			х																						х		
1711704 Basics of Radiobiology			х												х												
1711705 Applied radiation sciences				х												х											
1711706 Waste management										х													х				
1711707 Radiation protection					Х												x										
1711708 Dose measurements						x												х									
1711709 Exposures to radiation							х												х	х							
17117010Radiopharmaceuticals							х														х						
17117011Nuclear medicine				х																						х	
17117012Crisis management								х														х					
17117013Decontamination									х															х			
17117014Environmental radiations											Х	х								х							
Thesis																											х
									T		T																
Courses				c1	c2	c3	c4	c5	c6	c7	c8	c9	c10	c1	1 0	:12	C13	C14	4 (d1	d2	d3	d4	d5	d6	d7	d8
												l	<u> </u>	_												L	ł

Х

Х

Х

Department of Radiation Sciences

1711702 Basics of Radiation chemistry			х	х								x					х	х	х		T
1711703 Mathematics of radioactivity	х								х	х	х		х	х	х					х	
1711704 Basics of Radiobiology																х			х	х	
1711705 Applied radiation sciences														х	х	х					
1711706 Waste management														х			х	х			х
1711707 Radiation protection		х		х	х									х		х	х				
1711708 Dose measurements						х	Х	х						х	x	х					
1711709 Exposures to radiation														x	x					х	
17117010Radiopharmaceuticals														x			х			х	
17117011Nuclear medicine																х			х	х	
17117012Crisis management														х			х				х
17117013Decontamination														х	х	х					
17117014Environmental radiations														х	х					х	
Thesis																					

• M.Sc. of Radiobiology Program ARS vs ILO's Matrix

Program ARS	a1	a2	a3	a4	a5	a6	a7	a8	a9	a10	a11	a12
A1- A1. Review the basics underlying the process of radioactivity and radiation kinetics.	x											
A2.Recognize the major applications of radioactive isotopes.		х	х	х								
A3. Identify the nature, types and significance of radioactive waste.										x	x	
A4. Review the impact of contamination on the environment.					х	х			х			х
A5. Review the recent industrial, medical and agricultural uses of radioactive sources.			х	х							х	
A6.Identify basic principles and ethics of scientific research.						х						
A7. Recognize quality standards in handling radioactive materials.					х		х	х	х			
A6.Identify basic principles and ethics of scientific research.												

Program ARS	b1	b2	b3	b4	b5	b6	b7	b8	b9	b10	b11	b12	b13	b14
B1. Assess the risk/benefit ratio of radiation use.		x	х	х	х	х	х	х	х					
B2. Derive dosimetric calculations involving internal and external doses.						х								
B3. Analyze events that require an effective and careful response to a radiological					х					х	х			

Department of Radiation Sciences

emergencies.									
B4. Apply different types of decontamination dealing with each type of accidents for			х			х	х	х	
personnel and workplace.									
B5- Understand the cumulative nature of scientific knowledge.									
B7- Plan for periodic self-enhancement of his/her skillsProvide the student with practical									
skills of works to enhance his ability in the future employment									

				r			1							1
Program ARS	c1	c2	c3	c4	c5	c6	c7	с8	c9	c 10	c 11	C 12	c 13	c 14
C1. Practice radiation measurement using various survey meters and counters (as gamma scintillation			х			х			х					
counter and GM survey meter).														
C2. Analyze, interpret and write reports on radioactive decay modes.										х				
C3. Enhance the skills of the student in handling radioactive materials.						х								
C4. Solve variable dosimetric parameters.	х			х				х						
C5. Perform assessment calculations of Radiolabeled compounds' Preparation.												х	х	х

Program ARS	d1	d2	d3	d4	d5	d6	d7	d8
D1. Communicate Effectively Using Scientific Language and Reasoning.	х							
D2. Enhance students' written and oral skills.				х				
D3.Use information technology in handling data, information retrieval, document preparation, presentation and communication.		x	х		х	х	Х	x
D4.Develop an independent approach to learning as a preparation for continuous professional development					x		x	
D5. Share in determination of standards for evaluating others (e.g. subordinates, trainees).			x			x		x
D6. Master access to web sites to perform a research or solve problems.					х			
D7. Establish working relationship with colleagues, work effectively as a part of a team and develop a culture of disseminating and sharing information with peers.			x			x		x
D8.Work as team leader in situations comparable to his work level						х		х
D9.Develop an independent approach to learning as a preparation for continuous professional development					x		х	

• M.Sc. of Radiobiology Teaching and Learning Methods Vs Courses Matrix

	1711701	1711702	1711703	1711704	1711705	1711706	1711707	1711708	1711709	1711710	1711711	1711712	1711713	1711714
Lecture	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Practical	x	X	X				Х	X						
Brainstorming	x	X	x	X	Х	X	X	Х	X	Х		X	X	X
Discussion Groups	X		X	Х	Х			Х		X	Х	X	X	X
Problem Solving	X	X	X			X	Х						X	
Case Study			X										X	
Training Workshops														
Self-Directed Learning	x		Х	Х	Х		Х	Х	Х		Х	X	X	
e-learning														
Project		X							X					