

Program SPECIFICATION FOR PhD Degree in Medical Biophysics Code: 1712800

y: Medical Research Institute

Program Specification

A-Basic information

- **1- Program title: PhD Degree in Medical Biophysics**
- **2- Program type:** Single $\sqrt{}$ double multiple
- **3- Department(s) : Medical Biophysics**
- 4- Coordinator: ASS. Prof. Dr. Moustafa Hussein Moustafa
- **5-** External evaluator(s): Prof/ Abdelsataar Mohamed Morsy
- 6- Last date of program specification approval: 5/6/2014

B- Professional Information

1- Program aims to:

- 1. Identify the terms of biophysics of membranes and membrane proteins, Thermodynamics and function of artificial and biological membranes, Theoretical analysis of lipid dynamics and phase transitions, Electrostatics of charged bilayers, and Membrane proteins, structure, and function.
- 2. Explore a specialized area of tissue engineering. New biomaterials designed for tissue engineering. Traditional and computer aided design for biomaterials.
- 3. Make Models of nonlinear biological and physiological systems, Analysis and synthesis of dynamic models, Pressure-flow Model, Cardiac and circulation dynamics, Lung mechanics, Cardiovascular system, Respiratory system, Mass transport through diffusion and fluid flow, Multiple Model, Renal system, Membrane resting and action potential (Nernst equation), Cable conduction model, Electrical conduction and Signal propagation in the nervous system, and Finite difference Model.
- 4. Identify the absorption of the energy of ionizing radiation, Dependence of the biological effect on absorbed dose, Direct and indirect actions of ionizing radiation, Response of the cell to the action of ionizing radiation, Biological effects of low doses of ionizing radiation and long term consequences.

- 5. Differentiate between Medical instruments such as: Electrocardiogram, Blood pressure sensors, Heart sound sensors, Blood flow meters, Pacemakers and defibrillators, Cardiac assist devices. Clinical laboratory measurements, Radiography, MRI, Ultrasonic imaging, the electroshock hazards, and electroshock protection.
- 6. Analyze the dynamics of muscle and tendon, Models of muscle contraction, Kinematics and dynamics of the human body, Methods for generating equations of motion, Analysis of human movement, including gait, running, and balance, Computer simulations, and Discussion of experimental measurement techniques.
- 7. Examine dynamics of the Physiological fluid, Respiratory flow patterns, Blood flow and pulse propagation, and blood flow in the micro circulation. Laws for bio-viscoelastic fluids, solids and mixtures. Mechanical properties of blood vessels, ligaments, muscle, bone, and cartilage, Nonlinear continuum, and Multiphasic models of tissues.
- 8. Explore useful mathematical methods in theoretical molecular biophysics, Quantum mechanical description of molecules, Computational approaches to calculate properties of molecules of biological interest. Fundamental concepts of electrostatics for describing microscopic and macroscopic representations of the dielectric effects of solvating environments, Importance of solvation in biological processes, Molecular mechanical representation of systems and ensembles, Force field and energy expression.
- 9. Explore the biophysical principles and experimental approaches in the following areas: fluorescence techniques and application in biology, nuclear magnetic resonance structure and spectroscopy in biology, and X-ray Diffraction analysis of structure and function of macromolecules
- 10. Recall topics on linear algebra like vectors, matrices, vector spaces, determinants, eigen values and linear transformations. advanced calculus such as double and triple integrals, Fourier transforms, infinite series, improper integrals, Gamma and Beta functions and functions of complex variables, ordinary and partial differential equations.
- 11. Examine Advanced signal processing techniques. Pattern recognition/classification, Spectral estimation, including classical and modern, Time-frequency and time-scale. Nonlinear filtering, including rank order filtering, Random processes are an important component of the methods.
- 12. Explore the proteomics, from experimental procedures to data organization and analysis, Sample preparation and separations, Database search analysis, Characterizing post translational modifications, Protein-protein interactions and Protein microarrays.
- 13. Recall chemical, physical, and biological properties of synthetic polymer, metal, and ceramic biomaterials, Relationship between the structure of biomaterials and their interaction with soft, and hard tissue, Mechanical properties, fabrication, and degradation mechanisms, and performance testing of materials in biomedical use

- 14. Examine nanotechnology Scaling laws, Micro- and nanomaterials, Micro- and nanofabrication techniques, Biochemical and biomedical applications, Non-traditional fabrication techniques.
- 15. Analyze biocompatibility of soluble and insoluble polymers, Biocompatibility of biomaterials used as implants, blood substitutes, and carriers of bioactive molecules, Bio recognition of synthetic macromolecules on cellular and subcellular levels, Biodegradability and immunogenicity of biomaterials.
- 16. Recognize the molecular and cellular neuroscience concepts and Examine the theoretical analysis of brain function, the biophysical and molecular concepts relating to membrane excitability, action potential generation and propagation. Recall the molecular basis of chemical signaling at synapses, Mechanisms and models of synaptic integration and plasticity with emphasis on how molecular changes translate into altered synaptic strength and gene expression programs.
- 17. Explore the standard methods of preparing research of experimental design, Writing and criticizing scientific research papers and thesis, Presenting a recent journal article in the area of biophysics, physiology, biomedical engineering, or structural biology, the methodologies used and whether these were appropriate for the experiments carried out.
- 18. Use systematic approaches to design and conduct scientific research.
- 19. Conduct research studies that add to the existing specialty knowledge.

2- Intended learning outcomes (ILOS)

a- knowledge and understanding:

a1. Discuss the bilayer structure of biological membranes, the fundamental physico-chemical properties of the biological membrane, thermodynamics of lipid aggregation using spectroscopic method, the function of cell membrane and its role in signal transduction.

a2. Discuss tissue engineering, essential biomaterials in tissue engineering, the role of nanotechnology in tissue engineering, the nanofibers as a scaffold for tissue engineering

a3. Explain Models of nonlinear biological and physiological systems, Analysis and synthesis of dynamic models, Pressure-flow Model, Cardiac and circulation dynamics, Lung mechanics, Cardiovascular system, Respiratory system, Mass transport through diffusion and fluid flow, Multiple Model, Renal system, Membrane resting and action potential (Nernst equation), Cable conduction model, Electrical conduction and Signal propagation in the nervous system, and Finite difference Model.

a4. Discuss the types of radiations, methods and units used for radiation measurement, the effect of ionizing radiation on biological tissues the medical applications of ionizing radiation.

a5. Discuss the principles of medical instrumentation, the brain and muscle potentials, the medical sensors used in measurements of blood pressure and heart sound.

a6. Examine the principals of imaging using ultrasound and MRI.

a7. Recall Dynamics of muscle and tendon, Models of muscle contraction, Kinematics and dynamics of the human body Methods for generating equations of motion Analysis of human movement, including gait, running, and balance, Computer simulations, and Discussion of experimental measurement techniques.

a8. Discuss the physiological fluid dynamics and respiratory flow patterns, mechanical properties of blood vessels and bone, the laws for bio- viscoelastic fluids, solids and mixtures, the Blood flow in the microcirculation and pulse propagation.

a9. Recall the mathematical methods used in theoretical molecular biophysics, the quantum mechanical description of molecules, computational approaches to calculate properties of molecules of biological interest, the microscopic and macroscopic representations of the dielectric effects of solvating environments

a10. Discuss the biophysical principles of macromolecular structure and function, the Nuclear Magnetic Resonance Spectroscopy, Fluorescence Techniques in macromolecule identification, the X-ray Diffraction Analysis for macromolecular structure.

a11. Discuss topics on linear algebra like vectors, matrices, vector spaces, determinants, eigen values and linear transformations, advanced calculus such as double and triple integrals, Fourier transforms, infinite series, improper integrals, Gamma and Beta functions and functions of complex variables, ordinary and partial differential equations.

a12. Discuss general orthonormal bases, the advanced signal processing technique, Spectral estimation method, the nonlinear filtering, including rank order filtering.

a13. State the basics of proteome informatics. different methods for sample preparation and separation, protein-protein interactions, protein microarray.

a14. Discuss the chemical, physical, mechanical and biological properties of synthetic biomaterial. State the relation between structure and function of biomaterials, fabrication and degradation mechanisms of biomaterials, the interaction between biomaterial and biological tissues, biomaterials applications.

a15. Discuss the scaling laws, micro- and nanotechnology, micro- and nanofabrication techniques, the biomedical applications of micro and nanotechnology.

a16. Recall the Biocompatibility, biodegradability and immunogenicity of biomaterials, the biomaterials used as implants, blood substitutes and carriers of bioactive molecules.bio recognition of synthetic macromolecules on cellular and subcellular levels, the indications, sterilization and preparation of biocompatible biomaterials.

a17. Recall the biophysical concepts of membrane excitability, action potential generation and propagation, the molecular and cellular neuroscience and theoretical analysis of brain function, the molecular basis of chemical signaling at synapses and models of synaptic integration, the molecular changes on the synaptic strength and health of the brain.

a18. Recall the standard methods of preparing experimental research design, the basics of scientific writing, elementary statistical analysis methods of experimental data, the ethics of scientific research, publishing and copyrights.

a19- Design, conduction & explore publishing of scientific research.

b- Intellectual skills:

b1-Compare between different spectroscopic methods used to study membrane biophysics

b2- Examine the cell culture conditions.

b3-Develop mathematical models for nonlinear biological systems.

b4-Compare between different radio diagnostic and therapeutic tools

b5- Examine medical equipment testing and calibration.

b6- Analyze the heart health from electrocardiogram graph.

b7- Analyze the nonlinear continuum and Multiphasic models of tissues.

b8- Create a molecular mechanical representation and energy expression for biological systems.

b9- Analyze Structure of Macromolecules using Fluorescence Technique, X-ray Diffraction and Nuclear Magnetic Resonance analysis

b10- Construct a computer algorithm to solve determinants a solve integrals, determinants, matrices and differential equations.

b11- Compare between different advanced signal processing techniques

b12- Compare between different database search methodologies to analyze proteome informatics.

b13- Examine the biocompatibility of biomaterials.

b14- Compare between different methods of micro- and nanomaterials fabrication.

b15- Examine the characterization of biomaterials and their application.

b16- Analyze physical parameters related to action potentials generation and propagation using mathematical equations and models.

b17- Differentiate between different methodologies used to carry out a scientific research.

b18- Prepare scientific articles/ papers to be published in the indexed journals.

c- Professional and practical skills:

c1- Prepare tissues samples to be studied by electron microscopes.

c2-Illustrate the structure of membrane using electron microscopes.

c3- Apply biophysical equations which describe membrane functions.

c4- Demonstrate the electrospinning device for production of nanofibers.

c5- Prepare and characterize polymer solutions to be spun.

c6- Prepare and characterize nanofibers by using electrospinning technique.

c7-Apply mathematical equations to calculate the mass transport through diffusion,

membrane resting and action potential and Signal propagation in the nervous system

c8- Apply mathematical equations to calculate the radiation dose.

c9- Use the radiation dosimeters to estimate the radiation hazards

c10- Demonstrate the working procedures of medical ultrasonograph, electrocardiography and the structure and function of some optical sensors.

c11- Apply the Computer simulations for experimental measurement techniques

for human movement.

c12- Use mathematical equations of motion to explain Kinematics and dynamics of the human body.

c13- Use mathematical models for measuring the stress and strain of hard tissues and soft tissues and for measuring the bio-viscoelastic fluids, solids and mixtures.

c14- Practice the measuring of dielectric properties of biological tissues.

c15- Apply computational and mathematical methods to calculate physical properties of molecules of biological cell.

c16- Prepare materials to be analyzed by X-ray Diffraction

c17-Illustrate the X-ray Diffraction pattern.

c18-Interpret the macromolecular structure from the X-ray diffraction pattern

c19- Use computer programming languages like FORTRAN and C++ to test algorithms and validate mathematical models.

c20- Interpret signal spectrum obtained by different techniques.

c21- Use different algorithms for signal processing

- c22- Use computer programming language to run the signal processing algorithms
- c23-. Demonstrate the mass spectroscopy as a separation technique

c24-Use different data mining techniques to explore proteome data base

c25- Use supercomputers to process the proteome data.

c26-Prepare some of biomaterials in laboratory

c27- Employ mathematical equations to calculate some of biomaterials physical properties in laboratory.

c28 -Use computer simulation software to represent structure of biomaterials

c29- Prepare and characterize micro- and nanomaterials.

c30- Apply micro- and nanomaterials in biomedical application.

c31- Demonstrate using the biomaterials as implants, as blood substitutes and as matrix carriers for bioactive molecules.

c32- Use LCR dielectric Bridge to measure the dielectric properties of brain tissues.

c33- Use computational methods to simulate the way by which the brain functioning like artificial neural network and its application

c34-Practice the measuring of stress and strain of brain tissues

c35-Use the appropriate research methodology to conduct a research .

c36-Apply statistical methods to analyze experimental data .

c37-Use the principal of scientific writing to avoid literal mistakes and misrepresentations.

d- General and transferable skills:

- d1- Develop skills in reading.
- d2- Develop team work
- d3- Use information technology
- d4- Increase written and oral skills

3- Academic standards

3a External references for standards (Benchmarks)

Generic Academic Reference Standards if the National Authority for Quality Assurance and Accreditation of Education (NAQAAE)

Adopted at MRI council 12/2/2014 and re-adopted at 15/1/2023

Last date of Academic Reference standards (ARS) approval by institute 15/1/2023 Council

3B Comparison of provision to selected external references

Generic Academic Standards	Ars of PhD in Medical Biophysics
A1-Basic facts, theories, of the specialty and related subjects/ fields	 A1. Discuss the bilayer structure of biological membranes, their fundamental properties, and their role in signal transduction. It also discusses tissue engineering, essential biomaterials, and nanotechnology's role in tissue engineering. It also discusses models of nonlinear biological and physiological systems, including pressure-flow, cardiac, circulatory, and respiratory systems. A2. Cover the radiation types, measurement methods, effects on biological tissues, medical applications, principles of medical instrumentation, brain and muscle potentials, and medical sensors for blood pressure and heart sound measurements. A3. Examine ultrasound and MRI imaging principles, learn muscle and tendon dynamics, muscle contraction models, human body kinematics, motion equation generation, gait analysis, computer simulations, and experimental measurement techniques. A4. Recall the physiological fluid dynamics, respiratory flow patterns, mechanical properties of blood vessels and bone, bio-viscoelastic fluid laws, blood flow in microcirculation, and pulse propagation, while also referencing mathematical methods and computational approaches.
A2-Mutual relation between	A5. Examine the macromolecular structure and

professional practice and effects on environment	 function, including biophysical principles, nuclear magnetic resonance spectroscopy, fluorescence techniques, and X-ray diffraction analysis, linear algebra, advanced calculus, and complex functions. A6. Explore the orthonormal bases, advanced signal processing techniques, spectral estimation methods, nonlinear filtering, and rank order filtering, as well as
	the basics of proteome informatics and sample preparation and separation.
A3- Recent advances in the field of practice	A7. Explore the chemical, physical, mechanical, and biological properties of synthetic biomaterials, their structure-function relationship, fabrication and degradation mechanisms, interaction with biological tissues, and their biomedical applications.
A4-Details of ethical & legal practice	A9. Address the standard experimental research design methods, scientific writing basics, statistical analysis, ethics, publishing, and copyrights, as well as design, conduct, and explore publishing of scientific research.
A5 -Quality standards of the practice	A8. Recall principles of Biomaterials, used in implants, blood substitutes, and carriers of bioactive molecules, are biocompatible, biodegradable, and immunogenic. They recognize synthetic macromolecules, sterilize, and prepare biocompatible materials. Understanding molecular concepts and synaptic integration is crucial for brain function.
A6- Design, conduction & publishing of scientific research	A9. Address the standard experimental research design methods, scientific writing basics, statistical analysis, ethics, publishing, and copyrights, as well as design, conduct, and explore publishing of scientific research.
A7-Ethical considerations in different types of scientific research	A9. Address the standard experimental research design methods, scientific writing basics, statistical analysis, ethics, publishing, and copyrights, as well as design, conduct, and explore publishing of scientific research.
B1- Analyze, deduce, extrapolate & evaluation of information	B1. Compare various spectroscopic methods for studying membrane biophysics and examines cell culture conditions.
	B2. Create mathematical models for nonlinear biological systems and comparing radio diagnostic and

	therapeutic tools.
B2- Solve the majority of problems in the specialty according to the available data (complete or incomplete)	B3.Examine medical equipment testing and calibration, as well as analyzing heart health from an electrocardiogram graph.
B3- Conduct research studies that add to the existing specialty knowledge	B9. Identify and Utilize various scientific research methodologies, as well as creating scientific articles or papers for publication in indexed journals.
B4- Publish scientific articles/papers (in indexed journals)	B9. Identify and Utilize various scientific research methodologies, as well as creating scientific articles or papers for publication in indexed journals.
B5- Plan and implement (or supervise implementation of) enhancement & Improvement approaches to practice	B4.Analyze nonlinear continuum and multiphasic tissue models, as well as creating molecular mechanical representations and energy expressions for biological systems.
B6- Take decisions in various professional situations (including dilemmas & controversial issues)	B5. Examine macromolecule structure using fluorescence techniques, X-ray diffraction, and nuclear magnetic resonance analysis, and developing a computer algorithm for solving determinants, integrals, matrices, and differential equations.
B7- Add to the specialty field through creativity & innovation	B6. Compare various advanced signal processing techniques and database search methodologies for analyzing proteome informatics.
B8- Manage discussions on basis of evidence and proofs	B7.Explore the biocompatibility of biomaterials and compares various methods of fabrication for micro- and nanomaterials.
	B8. Evaluate the characterization and application of biomaterials, while also analyzing physical parameters related to action potential generation and propagation using mathematical equations and models.
C1- Competent in all basic and all required advanced professional skills (to be determined according to the specialty board/ department)	C1. Prepare tissue samples for electron microscope study, illustrating membrane structure, and applying biophysical equations to describe membrane functions.C2. Demonstrate an electrospinning device for
	nanofiber production, preparing and characterizing

	polymer solutions for spinning, and preparing and		
	characterization of nanofibers using		
	electrospinning technique.		
	C3. Calculate mass transport, radiation dose, and		
	radiation hazards in the nervous system, using		
	dosimeters to estimate hazards.		
	C4. Demonstrate medical ultrasonograph,		
	electrocardiography, and optical sensor		
	procedures, apply computer simulations for human		
	movement measurements, and use mathematical		
	equations to explain body kinematics and		
	dynamics.		
C2- Write and appraise reports	C5. Utilize mathematical models to measure stress, strain, and bio-viscoelastic fluids, practice dielectric properties of biological tissues, and apply computational and mathematical methods to calculate physical properties of biological cell molecules.		
	C.6 Prepare materials for X-ray diffraction analysis, illustrating the resulting pattern, and interpreting the macromolecular structure from the X-ray diffraction pattern.		
C3-Evaluate <i>and improve</i> methods and tools used in specialty	C7. Utilize programming languages like FORTRAN and C++ for algorithm testing and mathematical model validation, interpret signal spectrum from various techniques, and employ various signal processing algorithms.		
	C8. Execute signal processing algorithms, demonstrating mass spectroscopy as a separation technique, and employing various data mining techniques to explore proteome databases.		
C4- Use technology to advance practice	C9. Process proteome data, prepare biomaterials in the laboratory, and calculate their physical properties using mathematical equations.		
	C10. Outline the use of computer simulation software to represent biomaterial structure, prepare and characterize micro- and nanomaterials, and apply them		

	in biomedical applications.	
C5- Plan professional development	C11. Explore the biomaterials in implants, blood	
courses to improve practice and	substitutes, and matrix carriers, as well as the use of	
enhance performance of juniors	LCR dielectric bridge for measuring brain tissue	
	properties.	
	C12. Emphasize the importance of practicing stress and strain measurements on brain tissues and using the appropriate research methodology for conducting such studies.	
	C13. Utilize statistical methods for analyzing experimental data and adhere to the principles of scientific writing to prevent literal errors and misrepresentations.	
D1- Communicate effectively using	D1. Develop skills in reading.	
all methods	D4. Increase written and oral skills	
D2- Use information technology to	D3. Use information technology	
improve his/her professional		
practice		
D3- Teach and evaluate others	D2. Develop team work	
D4- Perform self appraisal & seek	D4. Increase written and oral skills	
continuous learning		
D5- Use different sources of	D3. Use information technology	
information to obtain data		
D6- Work in teams as well as a	D2. Develop team work	
member in larger teams		
D7- Manage scientific meetings and	D1. Develop skills in reading.	
appropriately utilize time	D3. Use information technology	

4- Curriculum structure and contents

4. a program duration: from 3 to 5 years

4.b program structure :

4. b.i- No. of hours per week in each year/semester: 12 hours per week/ semester

Semester	Number of hours
First semester	6 credit hours
Second semester	6 credit hours
Third semester	6 credit hours
Fourth semester	6 credit hours
Thesis	24 credit hours after finishing 12 credit hours at least

4.b.ii- No. of credit hours	Lectures	16	Practical	8	Thesis	24	Total	48	
	Compulsory	18	Elective	6	Optional	0			
4.b.iii- No. of credit	hours of spe	cializ	ed course	es	I	No. 1	8 %	5 75	
4.b.iv- No. of cred	lit hours of o	ther c	ourses		I	No. 6	%	25	

4. b.viii- Program levels (in credit-hours system)

Student is required to pass at least 12 credit hours with CGPA not less than C+ before submitting a thesis proposal.

5- Program Courses 5.1- Compulsory (18 hours)

		No. of	No. of ho	urs /week
Code No.	Course Title	credit hours	Lecture	Practical
1712801	Biophysics of membranes and membrane proteins	3	2	2
1712802	Advanced topics in tissue engineering	3	2	2
1712803	Modeling of physiological systems	3	2	2
1712804	Radiobiology and radionuclides	3	2	2
1712805	Medical instrumentation	3	2	2
1712806	Mechanics of human movement	3	2	2
Total		18	12	12

5.2- Elective I (6 hours)

		No. of	No. of ho	urs /week
Code No.	Course Title	credit hours	Lecture	Practical
1712807	Biosolid and biofluid mechanics	3	2	2
1712808	Introduction to theoretical molecular biophysics	3	2	2
1712809	Methods in molecular and cellular biophysics	3	2	2
1712810	Mathematical methods II	3	2	2
1712811	Advanced signal processing	3	2	2
1712812			2	2
1712813	Introduction to modern biomaterials	3	2	2
1712814	2814 Biological micro and nanotechnology		2	2
1712815			2	2
1712816	Fundamental neuroscience	3	2	2
1712817	Journal club in medical biophysicsII	3	2	2
1701820	Biochemistry	3	2	2
1703820	Physiology	3	2	2
1704820	Pharmacology	3	2	2
1706820	Bacteriology	3	2	2
1707820	Parasitology	3	2	2
1709820	Histochemisty and cell biology I	3	2	2
1718820	Radiodiagnosis	3	2	2
1719820	Nuclear Medicine	3	2	2
1721820	Medical statistics	3	2	2

6- Program admission requirements

Postgraduate students with a MSc or an equivalent degree in medical biophysics after passing the pre-requisite courses

7- Teaching and learning methods

- 1. Lectures
- 2. Practical sessions
- 3. Seminars
- 4. group discussion
- 5. self-learning
- 6. brain storming

8- Regulations for progression and program completion

For the progression and completion of the program to obtain the degree of PhD in medical biophysics, the student must:

- 1- Complete 24 credit hours with CGPA of at least C+ through courses.
- 2- Complete 24 credit hours through thesis.
- 3- Submit a thesis validity report by an examination committee approved by the department council and their members include at least two external examiners.

9- Evaluation of program:

Evaluator	tool	Sample
1- Senior students	Questionnaire	All the students
2- Alumni	Questionnaire	NA
3- Stakeholders (Employers)	Meeting	NA
4- External Evaluator(S)	Report	Prof/ Abdelsataar
External Examiner (s)		Mohamed Morsy
5- Other	NA	NA

Program coordinator:

Name: ASS. Prof. Dr. Moustafa Hussein Moustafa

 \downarrow Signature: ₩

Department Head: Name: Prof.Dr.Heba Said Ramadan Signature: Heba Said

Date of Department Council Approval: 29/8/2023

Program Aims vs Graduate Attribute matrix

Generic Graduate Attributes of NAQAAE	Graduate Attributes of Doctor of Philosophy in medical biophysics By the end of this program, Graduate of Doctor of Philosophy in <i>MEDICAL</i> <i>BIOPHYSICS</i> , should be able to	Program Aims
Master the basics and methodologies of scientific research.	• Physiological changes in biological membranes, physical equations, mechanical cell phenomena, electrical cell interconnection, signal propagation, mathematical modeling, nuclear radiation safety, and electromagnetic interaction in biological systems.	 Identify the terms of biophysics of membranes and membrane proteins, Thermodynamics and function of artificial and biological membranes, Theoretical analysis of lipid dynamics and phase transitions, Electrostatics of charged bilayers, and Membrane proteins, structure, and function. Make Models of nonlinear biological and physiological systems, Analysis and synthesis of dynamic models, Pressure-flow Model, Cardiac and circulation dynamics, Lung mechanics, Cardiovascular system, Respiratory system, Mass transport through diffusion and fluid flow, Multiple Model, Renal system, Membrane resting and action potential (Nernst equation), Cable conduction and Signal propagation in the nervous system, and Finite difference Model. Identify the absorption of the energy of ionizing radiation, Dependence of the biological effect on absorbed dose, Direct and indirect actions of ionizing radiation, Response of the cell to the action of ionizing radiation, Biological effects of low doses of ionizing radiation and long term consequences.
Work continuously to add to his/her	• The individual aims to develop teamwork, leadership, delegation,	– Use systematic approaches to

knowledge in the field of specialty.	coordination, interpersonal skills, a positive attitude, and effective management abilities.	design and conduct scientific research.
Apply the analytical and critical approach to knowledge in the field of specialty and related fields.	• Enhance performance by focusing on specific traits in expertise, follow scientific guidelines and ethical rules, periodically update program specifications and contents, and follow peer-reviewed articles and online reviews.	Explore the standard methods of preparing research of experimental design, Writing and criticizing scientific research papers and thesis, presenting a recent journal article in the area of biophysics, physiology, biomedical engineering, or structural biology, the methodologies used and whether these were appropriate for the experiments carried out.
Integrate knowledge in the field of specialty with related knowledge, deduce and develop relationships between them.	• Possesses extensive knowledge and awareness about local construction, the ability to comprehend the big picture, the ability to finance projects, and professional and management skills.	 Explore a specialized area of tissue engineering. New biomaterials designed for tissue engineering. Traditional and computer aided design for biomaterials.
Demonstrate a deep awareness of current problems and modern theories in the field of specialty.	• The program aims to enhance critical thinking, decision-making, contingency management, problem-solving, analytical thinking, and in-depth analysis of action outcomes.	 Explore the proteomics, from experimental procedures to data organization and analysis, Sample preparation and separations, Database search analysis, Characterizing post translational modifications, Protein-protein interactions and Protein microarrays.
Identify professional problems and find innovative solutions to solve them.	• The ability to efficiently research and analyze vast amounts of information, demonstrating a comprehensive understanding of the industry.	 Explore the biophysical principles and experimental approaches in the following areas: fluorescence techniques and application in biology, nuclear magnetic resonance structure and spectroscopy in biology, and X-ray Diffraction analysis of structure and function of macromolecules
Master a wide range of professional skills in the field of specialty.	• The individual have excellent communication, interpersonal skills, self- confidence, negotiation, confidence/arrogance, people skills, and patience.	- Examine dynamics of the Physiological fluid, Respiratory flow patterns, Blood flow and pulse propagation, and blood flow in the micro circulation. Laws for bio- viscoelastic fluids, solids and mixtures. Mechanical properties of

		blood vessels, ligaments, muscle, bone, and cartilage, nonlinear continuum, and Multiphasic models of tissues.
Develop new methods, tools and methods for professional practice.	• The ability to work independently and efficiently, as well as self-improvement, is a key aspect of individuality and independence.	 State the basics of proteome informatics. different methods for sample preparation and separation, protein-protein interactions, protein microarray
Use appropriate technological means to serve his professional practice.	• The individual acquires the ability to efficiently research and analyze vast amounts of information, demonstrating a deep understanding of general industry requirements.	 Conduct research studies that add to the existing specialty knowledge.
Communicate efficiently and lead work teams in various professional scenarios.	• Strong interpersonal skills, leadership, delegation, coordination, teamwork, and the capacity to lead and manage team members are all possessed by the individual.	 Recall chemical, physical, and biological properties of synthetic polymer, metal, and ceramic biomaterials, Relationship between the structure of biomaterials and their interaction with soft, and hard tissue, Mechanical properties, fabrication, and degradation mechanisms, and performance testing of materials in biomedical use
Take Decision in light of available data.	• The capacity to collaborate with others in a group, Collaboration and leadership abilities within the team, including the capacity to inspire others, behavior characteristics.	 Analyze the dynamics of muscle and tendon, Models of muscle contraction, Kinematics and dynamics of the human body, Methods for generating equations of motion, Analysis of human movement, including gait, running, and balance, Computer simulations, and Discussion of experimental measurement techniques.
Employ and develop available resources efficiently and work to find new resources.	• Creativity, inventiveness, and entrepreneurial skills Being capable of understand both what to accomplish and how to execute it successfully Self- assurance	 Differentiate between Medical instruments such as: Electrocardiogram, Blood pressure sensors, Heart sound sensors, Blood flow meters, Pacemakers and defibrillators, Cardiac assist devices. Clinical laboratory measurements, Radiography, MRI, Ultrasonic

		imaging, the electroshock hazards, and electroshock protection.
Show awareness of his/her role in community development and environmental preservation	• Proficiency in communication, negotiation, Individual characteristics, such as humor, a concentration on the health issues, Knowing what and why the other parties are requesting	 Examine advanced signal processing techniques. Pattern recognition/classification, Spectral estimation, including classical and modern, Time-frequency and time- scale. Nonlinear filtering, including rank order filtering, Random processes are an important component of the methods.
Act in a manner that reflects a commitment to integrity, credibility, and professionalism.	• Being able to communicate with clients and talk in public, abilities in communication, the capacity to communicate with others, confidence in oneself, abilities in negotiations, arrogance or confidence, be patient.	 Examine nanotechnology Scaling laws, Micro- and nanomaterials, Micro- and nanofabrication techniques, Biochemical and biomedical applications, Non-traditional fabrication techniques.
Commit to continuous self-development and transfer his/her knowledge and experiences to others.	• The power to oversee resources and time, The capacity for financial analysis and management, Skills in time management and leadership	 Recall topics on linear algebra like vectors, matrices, vector spaces, determinants, eigen values and linear transformations. Advanced calculus such as double and triple integrals, Fourier transforms, infinite series, improper integrals, Gamma and Beta functions and functions of complex variables, ordinary and partial differential equations.

Program Aims vs ILO's Matrix

NT.	ILOS	a1	a2	a3	a4	a5	a6	a7	a8	a9	a10	a11	a12	a13	a14	a15	a16	a17	a18	a19
No.	Aims																			
	Identify the terms of biophysics of membranes and membrane proteins,																		i İ	
1	Thermodynamics and function of artificial and biological membranes,																			
-	Theoretical analysis of lipid dynamics and phase transitions, Electrostatics of																			
	charged bilayers, and Membrane proteins, structure, and function																			
	Explore a specialized area of tissue engineering.New biomaterials designed		,																	
2	for tissue engineering. Traditional and computer aided design for																			
	biomaterials.																			
	Make Models of nonlinear biological and physiological systems, Analysis																			
	and synthesis of dynamic models, Pressure-flow Model, Cardiac and																			
	circulation dynamics, Lung mechanics, Cardiovascular system, Respiratory			1																
3	system, Mass transport through diffusion and fluid flow, Multiple			\checkmark																
	Model, Renal system, Membrane resting and action potential (Nernst																			
	equation), Cable conduction model, Electrical conduction and Signal																			
	propagation in the nervous system, and Finite difference Model.																			
	Identify the absorption of the energy of ionizing radiation, Dependence of the																	┝──┤	┝──┤	
	biological effect on absorbed dose, Direct and indirect actions of ionizing																			
4					\checkmark															
	radiation, Response of the cell to the action of ionizing radiation, Biological																			
	effects of low doses of ionizing radiation and long term consequences.																			
	Differentiate between the medical instruments such as: Electrocardiogram,																	┝──┤		
5	Blood pressure sensors, Heart sound sensors, Blood flow meters, Pacemakers																			
	and defibrillators, Cardiac assist devices. Clinical laboratory measurements,					,														
	Radiography, MRI, Ultrasonic imaging, the electroshock hazards, and																			
		1																	<u> </u>	

Page **21** of **42**

				1	r				1	1	1		
	electroshock protection.												
	Analyze the dynamics of muscle and tendon, Models of muscle contraction,												
	Kinematics and dynamics of the human body, Methods for generating												
6	equations of motion, Analysis of human movement, including gait, running,			\checkmark									
	and balance, Computer simulations, and Discussion of experimental												
	measurement techniques.												
	Examine dynamics of the Physiological fluid , Respiratory flow patterns,												
	Blood flow and pulse propagation, and blood flow in the micro circulation.												
7	Laws for bio-viscoelastic fluids, solids and mixtures. Mechanical properties of				\checkmark								
	blood vessels, ligaments, muscle, bone, and cartilage, Nonlinear continuum,												
	and Multiphasic models of tissues.												
	Explore useful Mathematical methods in theoretical molecular biophysics,		 										
	Quantum mechanical description of molecules, Computational approaches to												
	calculate properties of molecules of biological interest. Fundamental concepts												
8	of electrostatics for describing microscopic and macroscopic representations					\checkmark							
	of the dielectric effects of solvating environments, Importance of solvation in												
	biological processes, Molecular mechanical representation of systems and												
	ensembles, Force field and energy expression.												
	Explore the biophysical principles and experimental approaches in the												
9	following areas: fluorescence techniques and application in biology,												
-	nuclear magnetic resonance structure and spectroscopy in biology, and X-												
	ray Diffraction analysis of structure and function of macromolecules												
	Recall topics on linear algebra like vectors, matrices, vector spaces,												
10	determinants, eigen values and linear transformations. advanced calculus						\checkmark						
	such as double and triple integrals, Fourier transforms, infinite series,												
	improper integrals, Gamma and Beta functions and functions of complex												

Page **22** of **42**

	variables, ordinary and partial differential equations.													
11	Examine Advanced signal processing techniques. Pattern recognition/classification, Spectral estimation, including classical and modern, Time-frequency and time-scale.Nonlinear filtering, including rank order filtering,Random processes are an important component of the methods.						V							
12	Explore the proteomics, from experimental procedures to data organization and analysis, Sample preparation and separations, Database search analysis, Characterizing post translational modifications, Protein-protein interactions and Protein microarrays.							V						
13	Recall chemical, physical, and biological properties of synthetic polymer, metal, and ceramic biomaterials,Relationship between the structure of biomaterials and their interaction with soft, and hard tissue,Mechanical properties, fabrication, and degradation mechanisms, and performance testing of materials in biomedical use								V					
14	Examine nanotechnology Scaling laws, Micro- and nanomaterials, Micro- and nanofabrication techniques, Biochemical and biomedical applications, Non-traditional fabrication techniques.									\checkmark				
15	Analyze Biocompatibility of soluble and insoluble polymers, Biocompatibility of biomaterials used as implants, blood substitutes, and carriers of bioactive molecules, Bio recognition of synthetic macromolecules on cellular and subcellular levels, Biodegradability and immunogenicity of biomaterials.										\checkmark			
16	Recognize the molecular and cellular neuroscience concepts and Examine the theoretical analysis of brain function, the biophysical and molecular concepts relating to membrane excitability, action potential generation											\checkmark		

Page **23** of **42**

	and propagation. The molecular basis of chemical signaling at synapses, Mechanisms and models of synaptic integration and plasticity with emphasis on how molecular changes translate into altered synaptic strength and gene expression programs.											
17	Explore the standard methods of preparing research of experimental design, Writing and criticizing scientific research papers and thesis, Presenting a recent journal article in the area of biophysics, physiology, biomedical engineering, or structural biology, the methodologies used and whether these were appropriate for the experiments carried out.									\checkmark		
18	Use systematic approaches to design and conduct scientific research.										\checkmark	
19	Conduct research studies that add to the existing specialty knowledge.											

No.	ILOS	b1	b2	b3	b4	b5	b6	b7	b8	b9	b10	b11	b12	b13	b14	b15	b16	b17	b18
	Aims																		
	Identify the terms of biophysics of membranes and membrane proteins,																		
	Thermodynamics and function of artificial and biological membranes,	1																	
1	Theoretical analysis of lipid dynamics and phase transitions, Electrostatics of	N																	
	charged bilayers, and Membrane proteins, structure, and function																		
	Explore a specialized area of tissue engineering.New biomaterials designed																		
2	for tissue engineering. Traditional and computer aided design for		\checkmark																
	biomaterials.																		
3	Make Models of nonlinear biological and physiological systems, Analysis			\checkmark															
	and synthesis of dynamic models, Pressure-flow Model, Cardiac and																		

4	circulation dynamics, Lung mechanics, Cardiovascular system, Respiratory system, Mass transport through diffusion and fluid flow, Multiple Model, Renal system, Membrane resting and action potential (Nernst equation), Cable conduction model, Electrical conduction and Signal propagation in the nervous system, and Finite difference Model. Identify the absorption of the energy of ionizing radiation, Dependence of the biological effect on absorbed dose, Direct and indirect actions of ionizing radiation, Response of the cell to the action of ionizing radiation, Biological effects of low doses of ionizing radiation and long term consequences.		√									
5	Differentiate between the medical instruments such as: Electrocardiogram, Blood pressure sensors, Heart sound sensors, Blood flow meters, Pacemakers and defibrillators, Cardiac assist devices. Clinical laboratory measurements, Radiography, MRI, Ultrasonic imaging, the electroshock hazards, and electroshock protection.			V								
6	Analyze the dynamics of muscle and tendon, Models of muscle contraction, Kinematics and dynamics of the human body, Methods for generating equations of motion, Analysis of human movement, including gait, running, and balance, Computer simulations, and Discussion of experimental measurement techniques.				V							
7	Examine dynamics of the Physiological fluid, Respiratory flow patterns, Blood flow and pulse propagation, and blood flow in the micro circulation. Laws for bio-viscoelastic fluids, solids and mixtures. Mechanical properties of blood vessels, ligaments, muscle, bone, and cartilage, Nonlinear continuum, and Multiphasic models of tissues.					\checkmark						
8	Explore useful Mathematical methods in theoretical molecular biophysics, Quantum mechanical description of molecules, Computational approaches to calculate properties of molecules of biological interest. Fundamental concepts of electrostatics for describing microscopic and macroscopic representations of the dielectric effects of solvating environments, Importance of solvation in						\checkmark					

	biological processes, Molecular mechanical representation of systems and ensembles, Force field and energy expression.												
9	Explore the biophysical principles and experimental approaches in the following areas: fluorescence techniques and application in biology, nuclear magnetic resonance structure and spectroscopy in biology, and X-ray Diffraction analysis of structure and function of macromolecules					V							
10	Recall topics on linear algebra like vectors, matrices, vector spaces, determinants, eigen values and linear transformations. advanced calculus such as double and triple integrals, Fourier transforms, infinite series, improper integrals, Gamma and Beta functions and functions of complex variables, ordinary and partial differential equations.						V						
11	Advanced signal processing techniques.Pattern recognition/classification,Spectral estimation, including classical and modern, Time-frequency and time-scale.Nonlinear filtering, including rank order filtering,Random processes are an important component of the methods.							V					
12	Explore the proteomics, from experimental procedures to data organization and analysis, Sample preparation and separations, Database search analysis, Characterizing post translational modifications, Protein-protein interactions and Protein microarrays.								V				
13	Recall chemical, physical, and biological properties of synthetic polymer, metal, and ceramic biomaterials,Relationship between the structure of biomaterials and their interaction with soft, and hard tissue,Mechanical properties, fabrication, and degradation mechanisms, and performance testing of materials in biomedical use									\checkmark			
14	Examine nanotechnology Scaling laws, Micro- and nanomaterials, Micro- and nanofabrication techniques, Biochemical and biomedical applications, Non-traditional fabrication techniques.										V		

15	Analyze Biocompatibility of soluble and insoluble polymers, Biocompatibility of biomaterials used as implants, blood substitutes, and carriers of bioactive molecules, Bio recognition of synthetic macromolecules on cellular and subcellular levels, Biodegradability and immunogenicity of biomaterials.								V			
16	Recognize the molecular and cellular neuroscience concepts and Examine the theoretical analysis of brain function, the biophysical and molecular concepts relating to membrane excitability, action potential generation and propagation. The molecular basis of chemical signaling at synapses, Mechanisms and models of synaptic integration and plasticity with emphasis on how molecular changes translate into altered synaptic strength and gene expression programs.									V		
17	Explore the standard methods of preparing research of experimental design, Writing and criticizing scientific research papers and thesis, Presenting a recent journal article in the area of biophysics, physiology, biomedical engineering, or structural biology, the methodologies used and whether these were appropriate for the experiments carried out.										V	
18	Use systematic approaches to design and conduct scientific research.											\checkmark
19	Conduct research studies that add to the existing specialty knowledge.											\checkmark

No.	ILOS Aims	c1	c2	c3	c4	c5	c6	c7	c8	с9	c10	c11	c12	c13	c14	c15	c16	c17
1	Identify the terms of biophysics of membranes and membrane proteins, Thermodynamics and function of artificial and biological membranes, Theoretical analysis of lipid dynamics and phase transitions, Electrostatics of charged bilayers, and Membrane proteins, structure, and function.	V	V															
2	Explore a specialized area of tissue engineering.New biomaterials designed for tissue engineering. Traditional and computer aided design for biomaterials.																	
3	Make Models of nonlinear biological and physiological systems, Analysis and synthesis of dynamic models, Pressure-flow Model, Cardiac and circulation dynamics, Lung mechanics, Cardiovascular system, Respiratory system, Mass transport through diffusion and fluid flow, Multiple Model, Renal system, Membrane resting and action potential (Nernst equation), Cable conduction model, Electrical conduction and Signal propagation in the nervous system, and Finite difference Model.							V										
4	Identify the absorption of the energy of ionizing radiation, Dependence of the biological effect on absorbed dose, Direct and indirect actions of ionizing radiation, Response of the cell to the action of ionizing radiation, Biological effects of low doses of ionizing radiation and long term consequences.								V	\checkmark								
5	Differentiate between the medical instruments such as: Electrocardiogram, Blood pressure sensors, Heart sound sensors, Blood flow meters, Pacemakers and defibrillators, Cardiac assist devices. Clinical laboratory measurements, Radiography, MRI, Ultrasonic imaging, the electroshock hazards, and electroshock protection.										\checkmark							

6	Analyze the dynamics of muscle and tendon, Models of muscle contraction, Kinematics and dynamics of the human body, Methods for generating equations of motion, Analysis of human movement, including gait, running, and balance, Computer simulations, and Discussion of experimental measurement techniques.						V	V			
7	Examine dynamics of the Physiological fluid, Respiratory flow patterns, Blood flow and pulse propagation, and blood flow in the micro circulation. Laws for bio-viscoelastic fluids, solids and mixtures. Mechanical properties of blood vessels, ligaments, muscle, bone, and cartilage, Nonlinear continuum, and Multiphasic models of tissues.								 		
8	Explore useful Mathematical methods in theoretical molecular biophysics, Quantum mechanical description of molecules, Computational approaches to calculate properties of molecules of biological interest. Fundamental concepts of electrostatics for describing microscopic and macroscopic representations of the dielectric effects of solvating environments, Importance of solvation in biological processes, Molecular mechanical representation of systems and ensembles, Force field and energy expression.										
9	Explore the biophysical principles and experimental approaches in the following areas: fluorescence techniques and application in biology, nuclear magnetic resonance structure and spectroscopy in biology, and X-ray Diffraction analysis of structure and function of macromolecules									\checkmark	\checkmark

No.	ILOS Aims	c18	c19	c20	c21	c22	c23	c24	c25	c26	c27	c28	c29	c30	c31	c32	c33	c34	c35	c36	c37
9	Explore the biophysical principles and experimental approaches in the following areas: fluorescence techniques and application in biology, nuclear magnetic resonance structure and spectroscopy in biology, and X-ray Diffraction analysis of structure and function of macromolecules																				

10	Recall topics on linear algebra like vectors, matrices, vector spaces, determinants, eigen values and linear transformations. advanced calculus such as double and triple integrals, Fourier transforms, infinite series, improper integrals, Gamma and Beta functions and functions of complex variables, ordinary and partial differential equations.													
11	Advancedsignalprocessingtechniques.Patternrecognition/classification,Spectral estimation, including classical and modern,Time-frequencyand time-scale.Nonlinear filtering, including rank orderfiltering,Randomprocesses are an important component of the methods.		\checkmark	 \checkmark										
12	Explore the proteomics, from experimental procedures to data organization and analysis, Sample preparation and separations, Database search analysis, Characterizing post translational modifications, Protein-protein interactions and Protein microarrays.				 V									
13	Recall chemical, physical, and biological properties of synthetic polymer, metal, and ceramic biomaterials,Relationship between the structure of biomaterials and their interaction with soft, and hard tissue,Mechanical properties, fabrication, and degradation mechanisms, and performance testing of materials in biomedical use					\checkmark	\checkmark	\checkmark						
14	Examine nanotechnology Scaling laws, Micro- and nanomaterials, Micro- and nanofabrication techniques, Biochemical and biomedical applications, Non-traditional fabrication techniques.								\checkmark	\checkmark				
15	Analyze Biocompatibility of soluble and insoluble polymers, Biocompatibility of biomaterials used as implants, blood substitutes, and carriers of bioactive molecules, Bio recognition of synthetic macromolecules on cellular and subcellular levels, Biodegradability and immunogenicity of biomaterials.										V			

16	Recognize the molecular and cellular neuroscience concepts and Examine the theoretical analysis of brain function, the biophysical and molecular concepts relating to membrane excitability, action potential generation and propagation. The molecular basis of chemical signaling at synapses, Mechanisms and models of synaptic integration and plasticity with emphasis on how molecular changes translate into altered synaptic strength and gene expression programs.								V	V	\checkmark		
17	Explore the standard methods of preparing research of experimental design, Writing and criticizing scientific research papers and thesis, Presenting a recent journal article in the area of biophysics, physiology, biomedical engineering, or structural biology, the methodologies used and whether these were appropriate for the experiments carried out.											 	V
18	Use systematic approaches to design and conduct scientific research.											\checkmark	
19	Conduct research studies that add to the existing specialty knowledge.											\checkmark	

No.	ILOS	d1	d2	d3	d4
1	Identify the terms of biophysics of membranes and membrane proteins, Thermodynamics and function of artificial and biological membranes, Theoretical analysis of lipid dynamics and phase transitions, Electrostatics of charged bilayers, and Membrane proteins, structure, and function	\checkmark	V	\checkmark	
2	Explore a specialized area of tissue engineering. New biomaterials designed for tissue engineering. Traditional and computer aided design for biomaterials.	\checkmark	\checkmark	\checkmark	
3	Make Models of nonlinear biological and physiological systems, Analysis and synthesis of dynamic models, Pressure-flow Model, Cardiac and circulation dynamics, Lung mechanics, Cardiovascular system, Respiratory system, Mass transport through diffusion and fluid flow, Multiple Model, Renal system, Membrane resting and action potential (Nernst equation), Cable conduction model, Electrical conduction and Signal propagation in the nervous system, and Finite difference Model.	V		V	V

4	Identify the absorption of the energy of ionizing radiation, Dependence of the biological effect on absorbed dose, Direct and indirect actions of ionizing radiation, Response of the cell to the action of ionizing radiation, Biological effects of low doses of ionizing radiation and long term consequences.	\checkmark	\checkmark		V
5	Differentiate between the medical instruments such as: Electrocardiogram, Blood pressure sensors, Heart sound sensors, Blood flow meters, Pacemakers and defibrillators, Cardiac assist devices. Clinical laboratory measurements, Radiography, MRI, Ultrasonic imaging, the electroshock hazards, and electroshock protection.	V	V	V	V
6	Analyze the dynamics of muscle and tendon, Models of muscle contraction, Kinematics and dynamics of the human body, Methods for generating equations of motion, Analysis of human movement, including gait, running, and balance, Computer simulations, and Discussion of experimental measurement techniques.	\checkmark	V	\checkmark	\checkmark
7	Examine dynamics of the Physiological fluid, Respiratory flow patterns, Blood flow and pulse propagation, and blood flow in the micro circulation. Laws for bio-viscoelastic fluids, solids and mixtures. Mechanical properties of blood vessels, ligaments, muscle, bone, and cartilage, Nonlinear continuum, and Multiphasic models of tissues.				V
8	Explore useful Mathematical methods in theoretical molecular biophysics, Quantum mechanical description of molecules, Computational approaches to calculate properties of molecules of biological interest. Fundamental concepts of electrostatics for describing microscopic and macroscopic representations of the dielectric effects of solvating environments, Importance of solvation in biological processes, Molecular mechanical representation of systems and ensembles, Force field and energy expression.	\checkmark	\checkmark	\checkmark	\checkmark
9	Explore the biophysical principles and experimental approaches in the following areas: fluorescence techniques and application in biology, nuclear magnetic resonance structure and spectroscopy in biology, and X-ray Diffraction analysis of structure and function of macromolecules	\checkmark	\checkmark	\checkmark	\checkmark
10	Recall topics on linear algebra like vectors, matrices, vector spaces, determinants, eigen values and linear transformations. advanced calculus such as double and triple integrals, Fourier transforms, infinite series, improper integrals, Gamma and Beta functions and functions of complex variables, ordinary and partial differential equations.	\checkmark		\checkmark	\checkmark
11	Advanced signal processing techniques.Pattern recognition/classification,Spectral estimation, including classical and modern, Time-frequency and time-scale.Nonlinear filtering, including rank order filtering,Random processes are an important component of the methods.		\checkmark		
12	Explore the proteomics, from experimental procedures to data organization and analysis, Sample preparation and separations, Database search analysis, Characterizing post translational modifications, Protein-protein interactions and Protein microarrays.	\checkmark	\checkmark	\checkmark	\checkmark

13	Recall chemical, physical, and biological properties of synthetic polymer, metal, and ceramic biomaterials, Relationship between the structure of biomaterials and their interaction with soft, and hard tissue, Mechanical properties, fabrication, and degradation mechanisms, and performance testing of materials in biomedical use	\checkmark		\checkmark	
14	Examine nanotechnology Scaling laws, Micro- and nanomaterials, Micro- and nanofabrication techniques, Biochemical and biomedical applications, Non-traditional fabrication techniques.		\checkmark	\checkmark	\checkmark
15	Analyze Biocompatibility of soluble and insoluble polymers, Biocompatibility of biomaterials used as implants, blood substitutes, and carriers of bioactive molecules, Bio recognition of synthetic macromolecules on cellular and subcellular levels, Biodegradability and immunogenicity of biomaterials.	\checkmark	V	\checkmark	\checkmark
16	Recognize the molecular and cellular neuroscience concepts and Examine the theoretical analysis of brain function, the biophysical and molecular concepts relating to membrane excitability, action potential generation and propagation. The molecular basis of chemical signaling at synapses, Mechanisms and models of synaptic integration and plasticity with emphasis on how molecular changes translate into altered synaptic strength and gene expression programs.	V	V	V	V
17	Explore the standard methods of preparing research of experimental design, Writing and criticizing scientific research papers and thesis, Presenting a recent journal article in the area of biophysics, physiology, biomedical engineering, or structural biology, the methodologies used and whether these were appropriate for the experiments carried out.	\checkmark	\checkmark	\checkmark	
18	Use systematic approaches to design and conduct scientific research.		\checkmark	\checkmark	\checkmark
19	Conduct research studies that add to the existing specialty knowledge.				\checkmark

Program	Courses	vs Program	ILO's Matrix
---------	---------	------------	--------------

Course code	ILOS	a1	a2	a3	a4	a5	a6	a7	a8	a9	a10	a11	a12	a13	a14	a15	a16	a17	a18	a19
	Courses									•••										
1712801	Biophysics of membranes and membrane proteins	\checkmark																		
1712802	Advanced topics in tissue engineering		\checkmark																	
1712803	Modeling of physiological systems			\checkmark																
1712804	Radiobiology and radionuclides				\checkmark															
1712805	Medical instrumentation					\checkmark														
1712806	Mechanics of human movement						\checkmark													
1712807	Biosolid and biofluid mechanics							\checkmark												
1712808	Introduction to theoretical molecular biophysics								\checkmark											
1712809	Methods im molecular and cellular biophysics									\checkmark										
1712810	Mathematical methods II										\checkmark									
1712811	Advanced signal processing																			
1712812	Advances in vascular imaging techniques												\checkmark							
1712813	Introduction to modern biomaterials																			
1712814	Biological micro and nanotechnology																			
1712815	Biocompatibility															\checkmark				
1712816	Fundamental neuroscience																			
1712817	Journal club in medical biophysicsII																			
Thesis																			\checkmark	\checkmark

Page **34** of **42**

Course code	ILOS Courses	b1	b2	b3	b4	b5	b6	b7	b8	b9	b10	b11	b12	b13	b14	b15	b16	b17	b18
1712801	Biophysics of membranes and membrane proteins	\checkmark																	
1712802	Advanced topics in tissue engineering																		
1712803	Modeling of physiological systems			\checkmark															
1712804	Radiobiology and radionuclides				\checkmark														
1712805	Medical instrumentation					\checkmark													
1712806	Mechanics of human movement						\checkmark												
1712807	Biosolid and biofluid mechanics							\checkmark											
1712808	Introduction to theoretical molecular biophysics																		
1712809	Methods im molecular and cellular biophysics									v									
1712810	Mathematical methods II										\checkmark								
1712811	Advanced signal processing											\checkmark							
1712812	Advances in vascular imaging techniques												\checkmark						
1712813	Introduction to modern biomaterials													\checkmark					
1712814	Biological micro and nanotechnology														\checkmark				
1712815	biocompatibility															\checkmark			
1712816	Fundamental neuroscience														1		\checkmark		
1712817	Journal club in medical biophysicsII																	\checkmark	
Thesis																			\checkmark

Course code	ILOS Courses	c1	c2	c3	c4	c5	c6	c7	c8	с9	c10	c11	c12	c13	c14	c15	c16	c17
1712801	Biophysics of membranes and membrane proteins	\checkmark	\checkmark	\checkmark														
1712802	Advanced topics in tissue engineering				\checkmark	\checkmark	\checkmark											
1712803	Modeling of physiological systems							\checkmark										
1712804	Radiobiology and radionuclides									\checkmark								
1712805	Medical instrumentation										\checkmark							
1712806	Mechanics of human movement											\checkmark	\checkmark					
1712807	Biosolid and biofluid mechanics													\checkmark	\checkmark			
1712808	Introduction to theoretical molecular biophysics															\checkmark		
1712809	Methods im molecular and cellular biophysics																\checkmark	\checkmark

Course code	ILOS Courses	c18	c19	c20	c21	c22	c23	c24	c25	c26	c27	c28	c29	c30	c31	c32	c33	c34	c35	c36	c37
1712809	Methods in molecular and cellular biophysics	\checkmark																			
1712810	Mathematical methods II		\checkmark																		
1712811	Advanced signal processing			\checkmark	\checkmark	\checkmark															
1712812	Advances in vascular imaging techniques						\checkmark	\checkmark	\checkmark												
1712813	Introduction to modern biomaterials									\checkmark	\checkmark	\checkmark									
1712814	Biological micro and nanotechnology												\checkmark	\checkmark							

Page **36** of **42**

1712815	biocompatibility							\checkmark						
1712816	Fundamental neuroscience								\checkmark	\checkmark	\checkmark			
1712817	Journal club in medical biophysicsII											\checkmark	\checkmark	\checkmark
Thesis														

Course code	ILOS	d1	d2	d3	d4
1712801	Biophysics of membranes and membrane proteins	V	\checkmark	V	\checkmark
1712802	Advanced topics in tissue engineering	\checkmark	V	\checkmark	\checkmark
1712803	Modeling of physiological systems	\checkmark	V	\checkmark	\checkmark
1712804	Radiobiology and radionuclides	\checkmark	V	\checkmark	\checkmark
1712805	Medical instrumentation	\checkmark	\checkmark	\checkmark	\checkmark
1712806	Mechanics of human movement	\checkmark	V	\checkmark	\checkmark
1712807	Biosolid and biofluid mechanics	\checkmark	\checkmark	\checkmark	\checkmark
1712808	Introduction to theoretical molecular biophysics	\checkmark	\checkmark	\checkmark	\checkmark
1712809	Methods im molecular and cellular biophysics	\checkmark	\checkmark	\checkmark	\checkmark
1712810	Mathematical methods II	\checkmark	\checkmark	\checkmark	\checkmark
1712811	Advanced signal processing	\checkmark	\checkmark	\checkmark	\checkmark

1712812	Advances in vascular imaging techniques	\checkmark	\checkmark	\checkmark	\checkmark
1712813	Introduction to modern biomaterials	\checkmark	\checkmark	\checkmark	\checkmark
1712814	Biological micro and nanotechnology	\checkmark	\checkmark	\checkmark	\checkmark
1712815	biocompatibility	\checkmark	\checkmark	\checkmark	\checkmark
1712816	Fundamental neuroscience	\checkmark	\checkmark	\checkmark	\checkmark
1712817	Journal club in medical biophysicsII	\checkmark	\checkmark	\checkmark	\checkmark
Thesis					

ARS vs ILOs Matrix

ARS	a1	a2	a3	a4	a5	a6	a7	a8	a9	a10	a11	a12	a13	a14	a15	a16	a17	a18	a19
A1	\checkmark	\checkmark	\checkmark																
A2				\checkmark	\checkmark														
A3						\checkmark	\checkmark												
A4								\checkmark	V										
A5										\checkmark	V								
A6												V	\checkmark						
A7															\checkmark				
A8																\checkmark	\checkmark		
A9																		\checkmark	

ILOS ARS	b1	b2	b3	b4	b5	b6	b7	b8	b9	b10	b11	b12	b13	b14	b15	b16	b17	b18
B1	\checkmark	\checkmark																
B2			\checkmark	\checkmark														
B3					V	V												
B4							\checkmark	V										

Page **39** of **42**

B5					\checkmark							
B6						\checkmark	\checkmark					
B7								\checkmark	\checkmark			
B8										 		
B9											\checkmark	V

ARS	c1	c2	c3	c4	c5	c6	c7	c8	с9	c10	c11	c12	c13	c14	c15	c16	c17	c18	c19	c20	c21	c22	c23	c24	c25	c26	c27	c28	c29	c30	c31	c32	c33	c34	c35	c36	37
C1	V	V	V																																		
C2				\checkmark		V																															
C3							\checkmark	V	V																												
C4										\checkmark	\checkmark	\checkmark																									
C5													\checkmark	\checkmark	\checkmark																						
C6																\checkmark	\checkmark	\checkmark																			
C7																			\checkmark	\checkmark	\checkmark																
C8																						\checkmark		\checkmark													
С9																									\checkmark												
C10																												\checkmark	\checkmark	\checkmark							
C11																																\checkmark	\checkmark				

C12																	\checkmark	V	
C13																			 V

No.	ILOS	d1	d2	d3	d4
	ARS				
1	D1. Develop skills in reading.	\checkmark			
2	D2. Develop team work		\checkmark		
3	D3. Use information technology			\checkmark	
4	D4. Increase written and oral skills				\checkmark

	801	802	803	804	805	806	807	808	809	810	811	812	813	814	815	816	817	820
Lectures	\checkmark																	
Practical sessions	\checkmark																	
Seminars	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark				\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
Group discussion		\checkmark	\checkmark															
Self-learning	V	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	V	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	V	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Brain storming	\checkmark																	